G* =  = OPERADOR QUÂNTICO DE GRACELI.


    EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 


 { -1 / G* =   / T] /  c} =

G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..



    /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =



Momento magnético do eletrão[editar | editar código-fonte]

O momento (dipolar) magnético de um eletrão é:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    = /


 

é o tensor de tensão de Maxwell e c é a velocidade da luz. Assim,  é expresso e medido em unidades de pressão do S.I. (pascal).

onde  é o tensor eletromagnético e onde  é o tensor métrico de Minkowski [en] de assinatura métrica (− + + +). Ao usar a métrica com assinatura (+ − − −), a expressão à direita do sinal de igual terá sinal oposto.



Em geometria diferencial, o tensor de Einstein (também tensor de traço revertido de Ricci), nomeado em relação a Albert Einstein, é usado para expressar a curvatura de uma variedade de Riemann. Em relatividade geral, o tensor de Einstein aparece nas equações de campo de Einstein para a gravitação descrevendo a curvatura do espaço-tempo.

Definição[editar | editar código-fonte]

O tensor de Einstein  é um tensor de ordem definido sobre variedades riemannianas. Ele é definido como


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

sendo  o tensor de Ricci o tensor métrico e  o escalar de curvatura de Ricci. Em notação com índices, o tensor de Einstein tem a forma


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

 



Considerando a base coordenada  e sua correspondente dual , o tensor de Riemann pode ser expresso como


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

 
,

em que  representa o produto interno.

Deste modo, a expressão pode ser representada em termos de coordenadas usando os símbolos de Christoffel. Valendo-se da convenção do somatório de Einstein, pode-se representá-lo como


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

,

sendo .[3]

Comutadores e índices[editar | editar código-fonte]

Dado um quadrivetor genérico , o tensor de Riemann surge da comutação da derivada covariante segunda desse quadrivetor, ou seja,[4]


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

,

no qual  é o tensor de torção.

Considerando o caso em que não há torção, isto é,


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

/
,

o tensor de Riemann expressa a diferença medida da curvatura da variedade  quando o vetor  é transportado do ponto  para um ponto , primeiramente ao longo de uma congruência, e depois seguindo outra congruência, ou vice-versa.[5]

Versão covariante[editar | editar código-fonte]

tensor métrico covariante  pode se usado para abaixar um índice do tensor de Riemann, assim como o tensor contravariante  pode levantar um índice. Assim, a versão completamente covariante do tensor de curvatura do tipo (0,4) é dada por


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

Propriedades[editar | editar código-fonte]

Simetrias algébricas[editar | editar código-fonte]

O tensor de Riemann é antissimétrico nos dois últimos índices, ou seja,


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

/
,
.

Na sua forma completamente covariante, o tensor de Riemann é antissimétrico em relação à troca dos dois primeiros índices, isto é,


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


 ,

e é simétrico em relação à troca do primeiro par de índices com o segundo:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

/
.

Primeira identidade de Bianchi[editar | editar código-fonte]

Na ausência de torção, temos:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

.

Esta relação também pode ser escrita mais como


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

/
,

em que  indica uma antissimetrização nos índices. Assim, deve-se efetuar uma soma sobre todas as permutações dos três últimos índices, com um sinal correspondente à paridade da permutação. Resultando em 6 termos, mas que podem ser acoplados em virtude das propriedades algébricas descritas acima.

Componentes independentes[editar | editar código-fonte]

Embora o tensor de Riemann tenha  componentes, em que  é a dimensão da variedade sobre qual o tensor é definido, as relações descritas anteriormente reduzem este número a  componentes independentes. Para duas, três e quatro dimensões, o número de componentes independentes é respectivamente 1, 6 e 20.[6]

Segunda identidade de Bianchi[editar | editar código-fonte]

A segunda identidade de Bianchi é parecida com a primeira, mas leva em consideração a derivada covariante do tensor de Riemann. Na ausência de torção, a identidade possui a seguinte forma:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


.

Essa igualdade pode ser escrita de forma mais concisa como[4]


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

.

Tensor de curvatura de Ricci[editar | editar código-fonte]

tensor de curvatura de Ricci é a contração do primeiro e terceiro índice do tensor de Riemann.


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =




Em geometria diferencial, o tensor de curvatura de Ricci, ou simplesmente tensor de Ricci, é um tensor bivalente, obtido como um traço do tensor de curvatura. Pode ser pensado como um laplaciano do tensor métrico no caso das variedades de Riemann. Nas dimensões 2 e 3, o tensor de curvatura é determinado totalmente pela curvatura de Ricci. Pode-se pensar na curvatura de Ricci em uma variedade de Riemann como um operador no espaço tangente. Se este operador é simplesmente multiplicado por uma constante, então temos variedade de Einstein. A curvatura de Ricci é proporcional ao tensor métrico neste caso. Esse é mais um caso especial de tensor de Riemann, tendo uma contração em alguns índices seus, como o seguinte exemplo:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

,

sendo o símbolo de Christoffel representado por


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

 / 
.

Comentários